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ROBOTS IN HUMAN ECOLOGY

A HANDS-ON COURSE FOR ANTHROPOLOGISTS, ENGINEERS, AND POLICYMAKERS
ANT 325 / MAE 347 / SPI 384 (Spring 2024)
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FROM ONSITE TO REMOTE INSPECTIONS

PROS & CONS OF ONSITE INSPECTIONS

Onsite inspections remain the “gold standard” for IAEA safeqguards and nuclear
arms-control verification: inspections tend to be costly and are often considered intrusive,
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FINDINGS FROM A 2021 NATIONAL ACADEMIES STUDY

The National Academies of
SCIENCES * ENGINEERING * MEDICINE

CONSENSUS STUDY REPORT 3.4 MDV FOR ARMS CONTROL
3.4.1 Capability Needs
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Treaties that include weapons in storage or weapons

INTERIM REPORT
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https://doi.org/10.17226/26088

ROBOTIC INSPECTIONS

THE IDEA IS NOT NEW

The ROBIN provides a potential tool that ... allows the inspector to collect data inside a facility
without actually entering that facility ... [and] limits the potential disclosure of sensitive technology.”
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http://www.iaea.org/topics/safeguards-in-practice/robotics-challenge-2017

NUCLEAR SAFEGUARDS & ARMS CONTROL

POSSIBLE APPLICATIONS IN NUCLEAR SAFEGUARDS

Confirming the absence of undeclared activities in gas-centrifuge enrichment plants

 Detecting hidden feed & withdrawal stations in cascade areas
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INSPECTOR BOT @ PPPL

I

Source capsule

~1000 mm

584 mm
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SPECTRAL & DIRECTIONAL SENSITIVITY
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E. Lepowsky, M. Kiitt, S. Aslam, H. Fetsch, S. Snell, A. Glaser, and R. J. Goldston, “Experimental Demonstration and Modeling of a Robotic Neutron Detector
with Spectral and Directional Sensitivity for Treaty Verification,” Nuclear Instruments and Methods in Physics Research A, August 2022
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L OCALIZING AN UNKNOWN SOURCE

BIASED RANDOM WALK EXAMPLES USING A DIRECTIONAL RADIATION DETECTOR

Increasing signal-to-background
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Eric Lepowsky, Absent-Minded and Robotic Inspectors: Nuclear Verification Techniques with Minimal Access to ltems, Sites, and Information, PhD Thesis, Princeton University, May 2024
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L OCALIZING AN UNKNOWN SOURCE

IN THE PRESENCE OF AN EXISTING NEUTRON FIELD

Field Measurements in PPPL's Calibration and Service Laboratory (CASL), led by Eric Lepowsky
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L OCALIZING AN UNKNOWN SOURCE

IN THE PRESENCE OF AN EXISTING NEUTRON FIELD (USING THE TEMPLATE METHOD)
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Eric Lepowsky, Absent-Minded and Robotic Inspectors: Nuclear Verification Techniques with Minimal Access to Items, Sites, and Information, PhD Thesis, Princeton University, May 2024
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Marc H. Raibert

Robots
[hat

Balance

ARTICLES

LEGGED ROBOTS

Research on legged machines can lead to the construction of useful legged
vehicles and help us to understand legged locomotion in animals.

MARC H. RAIBERT

WHY STUDY LEGGED MACHINES?

Aside from the sheer thrill of creating machines that
actually run, there are two serious reasons for ex-
ploring the use of legs for locomotion. One is mobil-
ity: There is a need for vehicles that can travel in
difficult terrain, where existing vehicles cannot go.
Wheels excel on prepared surfaces such as rails and
roads, but perform poorly where the terrain is soft
or uneven. Because of these limitations, only about
half the earth’s landmass is accessible to existing
wheeled and tracked vehicles, whereas a much
greater area can be reached by animals on foot. It
should be possible to build legged vehicles that can
go to the places that animals can now reach.

One reason legs provide better mobility in rough
terrain is that they can use isolated footholds that
optimize support and traction, whereas a wheel re-
quires a continuous path of support. As a conse-
quence, a legged system can choose among the best
footholds in the reachable terrain; a wheel must ne-
gotiate the worst terrain. A ladder illustrates this
point: Rungs provide footholds that enable the as-
cent of legged systems, but the spaces between the
rungs prohibit the ascent of wheeled systems.

With the exception of a few modifications. this article is excerpted from
Legged Robots that Balance. © 1986 by Marc H. Raibert. Reprinted by permis-
sion of the author and The MIT Press.

June 1986 Volume 29 Number 6

Another advantage of legs is that they provide an
active suspension that decouples the path of the
body from the paths of the feet. The payload is free
to travel smoothly despite pronounced variations in
the terrain. A legged system can also step over obsta-
cles. In principle, the performance of legged vehicles
can, to a great extent, be independent of the detailed
roughness of the ground.

The construction of useful legged vehicles de-
pends on progress in several areas of engineering
and science. Legged vehicles will need systems that
control joint motions, sequence the use of legs, mon-
itor and manipulate balance, generate motions to use
known footholds, sense the terrain to find good foot-
holds, and calculate negotiable foothold sequences.
Most of these tasks are not well understood yet, but
research is under way. If this research is successful,
it will lead to the development of legged vehicles
that travel efficiently and quickly in terrain where
softness, grade, or obstacles make existing vehicles
ineffective. Such vehicles will be useful in indus-
trial, agricultural, and military applications.

The second reason for exploring legged machines
is to gain a better understanding of human and ani-
mal locomotion. Slow-motion television replays re-
veal to us the large variety and complexity of ways
athletes can carry, swing, toss, glide, and otherwise

Communications of the ACM
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Marc H. Raibert, “Legged Robots,” Communications of the ACM, 29 (6), June 1986, dL.acm.org/doi/10.1145/5948.5950
MIT Leg Laboratory (founded in 1980), www.ai.mit.edu/projects/leglab
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SPOT'S ANATOMY

bt e

dev.bostondynamics.com/docs/concepts/about_spot
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dev.bostondynamics.com/docs/concepts/about_spot
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SPOT A

’ Color Pattern Buzzer Robot status Example
. Most locomotion during
;g Normal operations, motor .
Slow blink Off manual and automatic
power ON. .
operation.
Normal operations, while
Fast blink? Off starting or changing Docking and undocking.
motion.
Green
Waiting to regain
3 Normal operations, sufficient clearance with
Pulse® (front " .
. waiting for an automated respect to other moving
indicator Off .
off) response (not for human objects along or near
intervention). Spot's path during
automatic operation.*
Normal operations with Traversing a crosswalk
. Slow . . .
Slow blink beep! an increased level of area during automatic
P warning. operation.4
Normal operations, before
. " . About to traverse a
) Fast starting activities with .
Fast blink 2 . crosswalk area during
beep an increased level of , 4
) automatic operation.
warning.
Amber
Flash® (front Slow Normal operations with
indicator beep' an increased level of Traversing stairs.
off) P warning (special cases).
Motors powering off as
. Activation of safet aresult of an operator
Solid Off y P .
response. command or protective
stop.
Failure or emergenc Emergency Stop pressed,
Red Fast blink? Off L gency or safety input interface
situation.
not properly configured.
Normal operations, -
" No or minimal apparent
waiting for human motion while capturin
White Pulse® Off intervention or during p g
. sensor data during
processes of variable \ )
automatic operation.
length.

Robotic and Remote Inspections for Nuclear Safeguards, Verification, and Beyond, Princeton Plasma Physics Laboratory, July 22, 2024

22



SPOT'S OBSTACLE AVOIDANCE

Perception Features Limitations

= General obstacle avoidance = Glass, mirror, or bright obstacles
= Walk on grated floor = Cables and cords

= Descend stairs before power off = Small and short objects

= Ground height detection = Moving objects

= Stairs/surface edge avoidance = People

= Avoid negative obstacles = Holes and cliff edges

= Autowalk “Avoid Ground Clutter” = Vegetation

Photo: Becca Farsace
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Bringing SPOT to L Eff




THEORY OF OPERATION

Users cannot directly manipulate SPOT's individual actuators
In an attempt to increase the “user friendliness” of SPOT, the manufacturer (only) offers higher-level controls

TABLET

Option 1: Remote-controlled by human operator (complemented with some pre-programmed actions)
Option 2: Record and play back missions (with some modest autonomy) ~ Autowalk

WORKSTATION
Option 3: Using SPOT Python Software Development Kit (SDK)

Python code runs on external computer, which sends commands (“gRPC messages”) to SPOT

No direct support for general (advanced) concepts of robot autonomy

Experts/collaborators from Sandia National Laboratories have developed a software package implementing “behavior trees”
building on the original SDK and providing a greater degree of autonomy for SPOT
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AUTOWALK

HOW DOES AUTOWALK WORK?

Autowalk can be used to record and (later) play back missions

Requires presence of fiducials for orientation and navigation throughout the environment

Actions can be added along the way while the map is being recorded

WHAT DOES AUTOWALK (NOT) ACCOMPLISH?
Mostly: “Go here, do this” (by default: look and take picture)

During Autowalk, SPOT can take shortcuts and avoid (previously unknown) obstacles

Limited capability to implement some logic (“If temperature at Point A too high, take picture’)

Source: Boston Dynamics
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SPOT “inspecting” @R codes on Princeton’s VR Deck
mae.princeton.edu/about-mae/spotlight/robot-cant-remember-it-could-be-


https://mae.princeton.edu/about-mae/spotlight/robot-cant-remember-it-could-be-future-nuclear-arms-control

SUMMARY AND OUTLOOK

EXPLORING ROBOTIC INSPECTION APPROACHES WITH SPOT

ROBOTIC & REMOTE INSPECTIONS

Multiple rationales; in the case of fusion energy systems, it's generally assumed that
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