Looking Back

Once More Into the Breach: Physicists Mobilize Again to Counter the Nuclear Threat

In Princeton 75 years ago, Albert Einstein announced the formation of the Emergency Committee of Atomic Scientists to educate and mobilize other scientists and the public on the dangers to humanity of the nuclear weapons recently developed by the United States and used to destroy two Japanese cities.

The committee of distinguished scientists, almost all of whom had been part of the nuclear weapons program, declared, “We scientists recognize our inescapable responsibility to carry to our fellow citizens an understanding of the simple facts of atomic energy and its implications for society. In this lies our only security and our only hope. We believe that an informed citizenry will act for life and not for death.”

The scientists feared for the future. Faced with the nuclear threat, the committee proclaimed, “there is no possibility of control except through the aroused understanding and insistence of

By Zia Mian, Stewart Prager, and Frank N. von Hippel

Zia Mian, Stewart Prager, and Frank N. von Hippel are members of the Program on Science and Global Security at Princeton University and are co-founders of the Physicists Coalition for Nuclear Threat Reduction, which is hosted by the program.
In the spring of 1945, led by James Franck, a group of scientists at the University of Chicago working on the atomic bomb program, made the same argument in the “Franck Report” and urged that the United States not use nuclear weapons on Japan or at least not do so without first consulting with its allies, including the Soviet Union. The report begins,

The scientists on this project do not presume to speak authoritatively on problems of national and international policy. However, we found ourselves, by the force of events, the last five years in the position of a small group of citizens cognizant of a grave danger for the safety of this country as well as for the future of all the other nations, of which the rest of mankind is unaware. We therefore felt it our duty to urge that the political problems, arising from the mastering of atomic power, be recognized in all their gravity, and that appropriate steps be taken for their study and the preparation of necessary decisions.

The physicists’ wartime efforts to impact U.S. nuclear policy were cloaked by secrecy, and all failed. After Hiroshima, however, the secret was out, and some scientists from the Manhattan Project that had built the atomic bomb rushed to inform the public of the terrible new weapons they had helped create and of their ideas for international control. It was an uphill battle. Polling in the days after the atomic bombing of Hiroshima found that more than 80 percent of Americans approved of dropping an atomic bomb on Japan and almost as many welcomed the development of the bomb.6

Public education by the scientists, the pioneering journalism by John Hersey about Hiroshima, and the work of countless activist groups did get traction. When the public was listening, activist scientists began to have some successes in Congress.

In the late 1950s and early 1960s, thousands of scientists, led by Linus Pauling, winner of the Nobel Prize in chemistry, provided technical support to the public’s desire to end atmospheric nuclear testing and its associated global radioactive fallout.7 This effort helped enable the 1963 Limited Test Ban Treaty, which banned nuclear testing everywhere but underground, and Pauling was awarded the Nobel Peace Prize that same year.

A decade later, with the public aroused by the Army’s proposal to put nuclear-armed interceptors for Soviet ballistic missiles in the suburbs, Congress listened to the arguments of scientist critics that the defenses being proposed could easily be blinded and overwhelmed by the Soviets. That led to the 1972 Soviet-U.S. treaty limiting anti-ballistic missile defenses and the offense-defense arms race that had already been triggered.8

In the 1980s, scientists led the resistance to President Ronald Reagan’s Strategic Defense Initiative program, commonly known as “Star Wars,” with thousands of scientists and engineers signing a pledge not to seek or accept funding to work on this space-based weapons program.9

Scientists actively supported the nuclear freeze movement in the 1980s. This included Carl Sagan and others who alerted the world to the risk of possible global atmospheric and climate consequences of large-scale nuclear war, including a years-long “nuclear winter” created by sunlight-blocking soot in the stratosphere from burned cities.10

In the mid-1980s, U.S. and Soviet scientists joined together to demonstrate in-country monitoring of Soviet General Secretary Mikhail Gorbachev’s unilateral nuclear test moratorium, reviving U.S.
congressional interest in and pressure for a Comprehensive Test Ban Treaty, which was finally realized in 1996.\(^{11}\)

With the end of the Cold War, however, many activist scientists set the nuclear weapons issue aside as public concern about the danger from the weapons waned. The focus shifted from U.S. nuclear weapons postures, policies, and budgets to the security of nuclear weapons and materials in the former Soviet Union and the dangers of nuclear proliferation. Although a few stalwarts of nuclear arms control continued to press for progress, members of Congress who had been engaged and educated by activists and scientists in the nuclear freeze movement were succeeded by members with other concerns. Nuclear weapons policy became primarily the province of entrenched interests: members representing states and districts with nuclear bases, nuclear weapons laboratories and military-industrial corporations, and nuclear strategists and lobbyists.

The Nuclear Challenge Renewed

When the Cold War ended 30 years ago, there was hope among many that nuclear weapons soon might be abolished. That passed, however, and more recent prospects for progress and leadership on disarmament by the United States raised by President Barack Obama in his speeches in Prague and Hiroshima have dimmed. Reductions of the Russian and U.S. arsenals have stalled, and in most of the seven other nuclear-armed countries, stockpiles of operational nuclear weapons are increasing.

Today, the world has about 10,000 operational and reserve nuclear warheads, plus several thousand weapons set aside for dismantlement. On average, they are about 10 times more powerful than the bombs that destroyed Hiroshima and Nagasaki; almost 2,000 of those weapons are on alert, ready to be launched on short notice.\(^{12}\) U.S. policy continues to maintain the option of first use of nuclear weapons in a conflict. Over the next several decades, nuclear weapons spending by the United States alone is expected to exceed $1.5 trillion.\(^{13}\)

Why should today’s physicists have a special responsibility to deliver the message of the urgent need to challenge the continuing dangers from nuclear weapons? We did not invent the atomic bomb, and outside the three large multibillion-dollar-per-year U.S. nuclear weapons laboratories, few U.S. physicists have much to do with nuclear weapons. At its most fundamental level, the catastrophic potential of thousands of nuclear warheads can be understood by anyone. Contending with these dangers...
involves a mixture of technical, policy, geopolitical, and ethical considerations
that is not taught in physics or any other discipline but must be learned on the job
by activists and government officials alike.

Through our knowledge of physics and
reading and discussion, some physicists
have become more expert in some
aspects of nuclear weapons issues than
most of our fellow citizens, but many
of them understand the human and
ethical aspects as well or better than we
do. Whether justified or not, the voice of
physicists on this problem seems to carry
special weight. We have learned this as
members of our local peace group, where
we are invited along as their “experts”
when they have constituent meetings on
nuclear weapons policy with members of
Congress or their staffs.

All physicists are aware in principle of
the tremendous explosive potential of
nuclear processes. Yet, like the general
public after the Cold War, most do not
view nuclear weapons as a high-priority
issue. This seems especially true of younger
physicists who did not experience the
recklessness, near misses, and political
struggles of the Cold War. We believe there
is a latent interest in the topic, however,
because of the history of leading physicists’
engagement as citizen-scientists during the
second half of the 20th century.

The Physicists Coalition began work
in September 2020. It is sponsored by
the American Physical Society (APS), a
national scientific society with 55,000
physicists as members, and is partly
supported by an APS Innovation
Fund award. The coalition is currently
partnering with the APS Office of
Government Affairs, which coordinates
APS-backed advocacy campaigns.

Princeton University’s Program on Science
and Global Security hosts the coalition.
Our goal is to develop a new national
network of citizen-physicists as a strong
voice for nuclear threat reduction.

During our first year, the coalition has
been built through a grassroots process
of outreach to the physics community.
The coalition has a team of 12 arms
control experts who have given virtual
colloquiums on the dangers of nuclear
weapons at 60 university physics
departments and one Department of
Energy national science laboratory.
The universities mostly are in districts

and states whose U.S. representatives
or senators serve on their respective
armed services committees and so have
responsibility for nuclear weapons budget
issues. We hope to expand to other
relevant committees and to all 50 states.

The presentations vary, but all provide
an overview of the danger posed by
nuclear arsenals around the globe, on
the threatened state of the nuclear arms
control and nonproliferation regimes, and
on possible immediate steps to reduce
the threat. The colloquiums are followed
by a meeting offering more in-depth
discussion for those interested in learning
about or joining the coalition.

Thus far, there has been little to no
pushback to our core message that the
nuclear status quo poses an existential,
unacceptable danger. In fact, the
colloquiums often lead to extended
discussions on policy and technical
aspects with strong expressions of
support for threat reduction measures.
Our site visits, plus a few webinars to
which the larger membership of the
APS Forum on Physics and Society has
been invited, have resulted in a current
coalition membership of more than 400
spread across the United States. Although
initially focused on recruiting physicists,
the coalition welcomes all interested
physical scientists, including those in
engineering science.

The coalition is making a special effort
to recruit and support physicists who are
women, people of color, or otherwise
underrepresented in nuclear weapons
policy debates. To this end, we have
initiated a one-year Next-Generation
Fellowship targeting early-career scientists
and underrepresented groups. The first
four fellows are working with more
senior mentors to learn nuclear policy
through practice and to train in policy
communication and advocacy.

Those who join the coalition do so
to learn more about nuclear weapons
issues and to be active advocates. In
the fall of 2020, as one small part of a
larger mobilization by nongovernmental
organizations (NGOs), coalition members
advocated for congressional support of
the extension of the New Strategic Arms
Reduction Treaty and for striking $10
million in funding in the Senate version
of the National Defense Authorization
Act designated for preparations for
renewed U.S. nuclear weapons testing.
The membership (about 250 at the time)
generated about 400 separate contacts
with Congress via emails, phone calls,
and virtual meetings with staff. Both
legislative goals were achieved.

Currently, the coalition is preparing
to argue for the United States to adopt
a more restrictive nuclear policy, either
no first use of nuclear weapons or that
the sole purpose of nuclear weapons is
to deter their use by other countries.
There is renewed hope this effort can
be successful given the past support
expressed by President Joe Biden for
such a declaration by the United States.
Other near-term advocacy goals are under
discussion. Coalition members have also
been developing expert policy papers on
adopting a no-first-use policy, ending
the U.S. policy of having a launch-on-
warning option, and retiring rather
than replacing U.S. intercontinental
ballistic missiles.

Ultimately, the elimination of the
nuclear threat will require much more
than a coalition of physicists and will
involve more fundamental policy shifts.
We are reaching out to see whether other
scientific communities in the United
States are interested in making common
cause. As Einstein and the Emergency
Committee understood, succeeding at
nuclear threat reduction will require an

Thus far, there has been little to no pushback to
our core message that the
nuclear status quo poses
an existential, unacceptable
danger.
informed public consistently engaged with nuclear weapons policy. We therefore are beginning to collaborate with citizen groups and NGOs working on the shared goal of educating the public and Congress on steps toward removing the nuclear shadow over our future.

Public support for this goal, albeit mostly passive, already exists. A 2020 survey found that two-thirds of Americans, including majorities of Democrats, independents, and Republicans, agreed that no country should be allowed to have nuclear weapons.15 As a result of advocacy by the Back From the Brink campaign and the International Campaign to Abolish Nuclear Weapons, 53 U.S. cities and towns and four state legislatures (California, Maine, New Jersey, and Oregon), many organizations, and some civil leaders, including in Congress, have expressed support for specific steps to reduce nuclear threats and for nuclear disarmament.16

Finally, because the nuclear problem is global, its solution requires an international effort. The coalition is beginning to explore with communities of physicists in other countries their interest in educating their own governments. There is already interest from members of the Pugwash Conferences on Science and World Affairs, a movement that emerged from the Bertrand Russell-Albert Einstein Manifesto of 1955 and received the Nobel Peace Prize in 1995.17

The engagement of activist-physicists with their national political policies is especially important now in the nine countries that have nuclear weapons, the five countries (Belgium, Germany, Italy, the Netherlands, and Turkey) that host U.S. nuclear weapons, and the more than 25 additional countries that the United States has promised to use its nuclear weapons to defend if they come under attack. In some of these countries, the new UN Treaty on the Prohibition of Nuclear Weapons, which bans the use and the threat of use of such weapons, has already gained broad public support.18 The treaty entered into force in January 2021 and has 86 state signatories so far. There may be new allies here for the scientists of today who carry on with the crucial task set out by Einstein’s Emergency Committee so many years ago.

ENDNOTES

