

RECONSTRUCTING THE HISTORY OF NUCLEAR PROGRAMS THE ROLE OF COMPUTATIONAL TOOLS & OPERATING RECORDS FOR NUCLEAR ARCHAEOLOGY

Alex Glaser Program on Science and Global Security Princeton University

MTV Fuel Cycle Facility Modeling Workshop October 7–8, Madison, WI, 2019

1	-	ASSE	MBLE	REVIS	ION 04	4 OF	AGC PI	ROGRAM	COM	ANCHE BY	NASA 202	1113-011
<mark>ها</mark> د ا		DI	SPLAY	INTE	RFACE	ROUTI	NES			MUNAU T		
-						00.01	-	-	14			
	82	CAI	LLING	SECUI	ENCE F	UK BL	ANKIM	2			CAE	DITY
	13				1000	THE STAR	C. ANTINA		-	R HARPECT P	TC	BLANKET
	4		1						1000			OLANNEL
	15											
1	1.C	TN	OPDE	P TO I	SE BI	ANKET	CORRE	CTLY TH	IE L	SER MUST	USE A D	ISPLAY ROUTH
	0	In	DIAN	VET AT	THE	IMMEDI	TATE R	FTURN L	oc.			
	0	-10	DLAN	ACT AT								
100	0		11118				5526	Res de la serie		States and States	BLOCK	02
-	0	DEE	1				4000				SETLOC	FFTAG4
	1			al Partie			5526				BANK	
And Personal Property of		12-10								and the second second	A Law Ser	
Contraction of the	,	DEE	1	100000			1224				COUNT	02/DSPLA
and the stored		ALL		THE REAL	1. 1. 1. 1. J.							
Contraction of the	-	REE	703	LAST	1448		5526	54 162	0	BLANKET	TS	MPAC +6
1.0.000		REE	1				5527	4 0160	1		CS	PLAYTEM4
		REE	704	LAST	1464		5530	7 0162	0		MASK	MPAC +6
		REE	705	LAST	1464		5531	50 161	1		INDEX	MPAC +5
a		REF	2	LAST	1464		5532	26 160	1		ADS	PLAYTEM4
Contraction of the second		ner.	12.8	LEVI								
		REE	225	TZAL	1450		5533	0 0002	0		TC	0
		BLL		LASI	1120							
		DEE	60	TAST	1441	S.M.	5534	0 4701	0	ENDMARK	TC	POSTJUMP
	2	DEE	1	LASI	1771		5525	20553	0	LINDHAM	CADR	MARKEND
the second se		ALL	10000	and the					-		CADA	TRANCENE
A COMPANY	21	REE	278	LAST	1449		5536	3 5021	1	CLEARMEN	CAF	ZERO
storin	22	REF	20	LAST	934	10000	5537	551044	1	CLEMIN	TS	EXTVBACT
12820			-			1000				Charles and the second second		
174 14 4.	123		2		The states		5540	0 0004	+ 0		INHINT	
A CALL	124	RE	F 8	2 LAS	T 1437	So work	5541	4 501	7 0		CS	BIT1
a the set	5129	5 RE	F	5 LAS	T 392	2	5542	7 010	0 1	P. P. Harris	MASK	FLAGWRD4

Revision 1

BACKERBUILD

There is enough nuclear explosive material worldwide to make over 200,000 nuclear weapons

1340 tons of highly enriched uranium (HEU)

the amount necessary to make a fission bomb; about 111,670 bombs-worth total the amount necessary to make a fission bomb; about 130,000 bombs-worth total

Graphic/concept by Alex Wellerstein and Tamara Patton Status as of end of 2016

ESTIMATING INVENTORIES CAN BE HARD (AN EXAMPLE FROM THE 1996 U.S. PLUTONIUM DECLARATION)

Plutonium: The First 50 Years

DOE/DP-0137 U.S. Department of Energy February 1996

United States plutonium production, acquisition, and utilization from 1944 through 1994

Wartime & Tests 3.4 MT

Fission & Transmutation

Inventory Differences 2.8 MT

Plutonium: The First 50 Years, DOE/DP-0137, U.S. Department of Energy, Washington, DC, February 1996, <u>www.ipfmlibrary.org/doe96.pdf</u>

DEVELOPING THE TOOLS FOR POSSIBLE NUCLEAR ARCHAEOLOGY IN NORTH KOREA

Uranium mine at Pyongsan Credit: Google Earth

Inside North Korea's Yongbyon Reactor Credit: CNN/Brian Rokus, 2008

Operating records shared in 2008 Credit: Chung Sung-Jun

MONITORING, TECHNOLOGY, VERIFICATION

Our topic area seeks to develop "new tools and methods for monitoring past and present fuel cycle activities." Verified elimination of a nuclear weapons program may require robust methods to reconstruct past activities in order to enable comprehensive, verifiable, and irreversible disarmament.

available data.

The framework would complement "traditional" nuclear archaeology techniques.

- We envision a framework that allows reconstruction of a state's fissile-material production history by examining the role of state-of-the-art modeling tools, operating records, and other

MUSIC TELEV

CASE STUDY Hanford, WA – West Valley, NY February 1969

Hanford Site, United States Coordinates: 46.7 N, 119.5 E

- **1** Production Reactors
- **2** Plutonium Finishing Plant
- **3** Reprocessing plants (T-Plant and REDOX)
- 4 Reprocessing plants (B-Plant and PUREX)
- **5** Reactor fuel fabrication
- 6 Fast Flux Test Facility (FFTF)

DECLARED PLUTONIUM PRODUCTION AT HANFORD

Plutonium: The First 50 Years, DOE/DP-0137, U.S. Department of Energy, Washington, DC, February 1996, <u>www.ipfmlibrary.org/doe96.pdf</u>

Weapon Grade (54.5)

Fiscal	Weapon	Fuel ¹³	Annual	Cumulative	Fiscal	Weapon	Fuel ¹⁴	Annual	Cumulative
Year	Grade	Grade	Total	Total	Year	Grade	Grade	Total	Total
1947 ¹⁵	493	-	493	493	1969	430	2,109	2,539	56,763
1948	183	-	183	676	1970	977	707	1,684	58,447
1949	270	-	270	946	1971	270	467	737	59,184
1950	392	-	392	1,338	1972	-	414	414	59,598
1951	288	-	288	1,626	1973	-	673	673	60,271
1952	662	-	662	2,288	1974	-	607	607	60,878
1953	838	-	838	3,126	1975	-	557	557	61,435
1954	1,113	-	1,113	4,239	1976	-	429	429	61,864
1955	1,413	-	1,413	5,652	1977	-	560	560	62,424
1956	2,074	-	2,074	7,726	1978	-	559	559	62,983
1957	2,662	-	2,662	10,388	1979	-	544	544	63,527
1958	3,303	- }	3,303	13,691	1980	-	413	413	63,940
1959	3,581	2	3,581	17,272	1981	-	196	196	64,136
1960	4,266	-	4,266	21,538	1982	-	449	449	64,585
1961	4,449	-	4,449	25,987	1983	624	-	624	65,209
1962	4,169	-	4,169	30,156	1984	294	-	294	65,503
1963	4,187	-	4,187	34,343	1985	633	-	633	66,136
1964	4,247	256	4,503	38,846	1986	934	-	934	67,070
1965	4,208	562	4,770	43,616	1987	312	-	312	67,382
1966	3,130	800	3,930	47,546	1988 ¹⁶	-21	-	-21	67,361
1967	2,586	1,069	3,655	51,201	1989 ¹⁷	2	-	2	67,363
1968	1,494	1,530	3,023	54,224					

Ц

N

Lot	Fuel	Reactor	Process	Rece	ived ^b	Recovered ^c
No	Source	Name	Date	MTU ^d	kg Pu	kg Pu
2	Atomic Energy Commission	N-Reactor	4-22-66	19.7	1.7	1.2
1			5-20-66	28.8	2.3	2.5
3			7-15-66	46.7	50.9	50.2
4	Commonwealth Edison	Dresden-1	11-12-66	50.0	191.0	182.2
5	Yankee Atomic Electric	Yankee Rowe	6-7-67	49.8	285.1 ^e	278.6
6	Atomic Energy Commission	N-Reactor	9-2-67	26.6	52.6	50.4
7			12-2-67	26.1	47.4	46.9
8			1-6-68	42.4	75.4	77.0
9			5-5-68	38.8	79.1	78.0
10			6-29-68	55.3	115.7	114.4
11	Consolidated Edison ^f	Indian Point-1	11-15-68	1.1		-
12	Atomic Energy Commission	N-Reactor	2-13-69	48.9	102.5	90.2
13	Yankee Atomic Electric	Yankee Rowe	5-14-69	19.6	176.0	171.6
14	Atomic Energy Commission ^g	N-Reactor	8-16-69	30.3	-	-
15	Commonwealth Edison	Dresden-1	10-1-69	21.5	104.6	102.3
16	Consolidated Edison	Indian Point-1	11-23-69	15.6	107.6	104.2
17	Yankee Atomic Electric	Yankee Rowe	6-2-70	9.3	95.6	91.5
18	Northern States Power	Pathfinder	8-14-70	9.6	7.1	7.0
19	Consumers Power	Big Rock Point	11-26-70	18.4	72.8	72.7
20	Consolidated Edison	Indian Point-1	1-11-71	7.6	68.1	63.0
21	Atomic Energy Commission	N-Reactor	2-25-71	15.8	25.4	22.8
22	Puerto Rico Water Resources Authority	Bonus Superheater ^h Bonus Boiler ⁱ	4-15-71 4-18-71	1.7 2.4	0.9 4.0	6.5
23	Pacific Gas and Electric	Humbolt Bay	5-20-71	20.8	87.2	86.0
24	Yankee Atomic Electric	Yankee Rowe	7-16-71	9.5	95.7	91.0
25	Carolinas-Virginia Nuclear Power Associates	CVTR-PARR	10-4-71	3.5	11.6	11.8
26	Consumers Power	Big Rock Point	11-30-71	5.8	27.9	28.4
27	Nuclear Fuels Services, Erwin, Tennessee ^j	SEFOR	12-12-71	0.1	95.5	95.2
	Total	625.7	1,983.7	1,925.6		

Table 1. Fuel Reprocessed and Plutonium Recovered at NFS West Valley

Note: Footnotes for Table 1 can be found on the page 12.

UNDERSTANDING "LOT 12" (FUEL FROM HANFORD N-REACTOR, PROCESSED IN FEBRUARY 1969)

48,900 kg of uranium in spent fuel containing an estimated 102.5 kg of plutonium About 2.1 g of plutonium per kilogram of fuel Approximate average burnup: ~ 3000 MWd/t (with about 85% Pu-239)

<u>NUCLEAR FUEL SERVICES, WEST VALLEY, NY</u> (+42.4506, -78.6547)

Recovered 90.2 kg of plutonium Inventory difference of (102.5 - 90.2) kg = 12.3 kg Corresponds to 12300 g / (2.1 g/kg) \approx 5800 kg of spent fuel equivalent

Source: U.S. Department of Energy (top) and Antepenultimate/Wikipedia Commons

HANFORD N-REACTOR (+46.6744, -119.5695)

NUCLEAR FUEL CYCLE HISTORIES

<u>Creating Synthetic Histories</u> of a Notional Nuclear Weapons Program

<u>A Tabletop Exercise</u>

Princeton, NJ September 6, 2018

The plan for this tabletop exercise will be to create synthetic histories for a nuclear weapons program using *Cyclus* and other modeling tools. The exercise will develop a timeline of events and the required infrastructure associated with a notional nuclear weapons program that has produced fissile material and nuclear weapons over a 20-30-year time period (approx. 200 weapons, both fission and boosted fusion). This will be the basis for alternative synthetic histories (generated with *Cyclus*) of fissile material and waste inventories, annual warhead production and dismantlement, and notional production records for these activities. These histories will permit an exploration of the scope for concealing warheads and materials, and the role the documentation of a nuclear program's history could play in verifying a nuclear disarmament plan and establishing confidence in the completeness of a related declaration by a weapon state.

NOTIONAL NUCLEAR FUEL CYCLE WITH (UNDECLARED) MILITARY DIMENSION

Source: John Kinney, IAEA

BASIC CYCLUS CONCEPTS

Cyclus uses a time-step approach to march through time and determine what actions are taken by each agent at each point in time.

- New agents may enter the system (deployment)
- Each agent prepares for exchange of material
- Agents engage in material trades
- Each agent acts after the exchange of material
- Agents may leave the system (decommissioning)

Source: fuelcycle.org

SCIENCE AND GLOBAL SECURITY